Abstract
We developed a noncontact, nondestructive surface acoustic waves (SAW) velocity and attenuation measurement method in the frequency range of 30–110 MHz. This method is based on the phase velocity scanning method previously proposed by the authors that uses laser interference fringes scanned at the phase velocity of SAW to generate single-mode SAW with high intensity and directivity. In order to verify the validity and accuracy of the method, we measured SAW velocity and attenuation in Al and AISI 304 steel. The error in SAW velocity measurement was less than 1% in Al. Also, the attenuation was obtained with high precision in the AISI 304 steel. Then, we applied this method to porous silicon (PS) films on Si wafers as an example of a layered medium. The SAW velocity in PS films decreased with increasing porosity. By fitting the calculated dispersion curve to the measured one, the elastic stiffness of PS films was determined with a relative accuracy of 0.2%, which is thought to be the highest using laser ultrasonic methods. The attenuation of PS films was found to be 6–80 dB/cm in the frequency range of 30–70 MHz. The frequency dependence of attenuation was obtained with high precisely.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.