Abstract

We present systematic measurements of the quality factors of surface acoustic wave (SAW) resonators on ST-X quartz in the gigahertz range at a temperature of $10 \, \textrm{mK}$. We demonstrate a internal quality factor $Q_\mathrm{i}$ approaching $0.5$ million at $0.5 \, \textrm{GHz}$ and show that $Q_\mathrm{i}\geq4.0\times10^4$ is achievable up to $4.4 \, \textrm{GHz}$. We show evidence for a polynomial dependence of propagation loss on frequency, as well as a weak drive power dependence of $Q_\mathrm{i}$ that saturates at low power, the latter being consistent with coupling to a bath of two-level systems. Our results indicate that SAW resonators are promising devices for integration with superconducting quantum circuits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.