Abstract
In this study, AlN thin films were deposited on a polycrystalline (poly) 3C-SiC buffer layer for surface acoustic wave (SAW) applications using a pulsed reactive magnetron sputtering system. AFM, XRD and FT-IR were used to analyze structural properties and the morphology of the AlN/3C-SiC thin film. Suitability of the film in SAW applications was investigated by comparing the SAW characteristics of an interdigital transducer (IDT)/AlN/3C-SiC structure with the IDT/AlN/Si structure at 160 MHz in the temperature range 30–150 °C. These experimental results showed that AlN films on the poly (1 1 1) preferred 3C-SiC have dominant c-axis orientation. Furthermore, the film showed improved temperature stability for the SAW device, TCF = −18 ppm/°C. The change in resonance frequency according to temperature was nearly linear. The insertion loss decrease was about 0.033 dB/°C. However, some defects existed in the film, which caused a slight reduction in SAW velocity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.