Abstract

We prepared three discotic liquid crystals (DLCs) based on a triphenylene (TP) disc functionalized with twelve alkyl peripheries. The synthesis of the discogens was performed by a click reaction using Cu(OAc)2 as the catalyst, with six triazolyl groups connecting the TP core with twelve alkyl chains. According to thermal data from differential scanning calorimetry (DSC), discogen , which has the shortest hexyl peripheries, exhibited two LC phases, and and , with decyl and tetradecyl peripheries, respectively, displayed three LC phases as a function of the temperature. Structural analyses using small- and wide-angle X-ray scattering (SAXS and WAXS) techniques revealed ordered and disordered hexagonal columnar LC phases in all the discogens. On the other hand, an unconventional micellar phase with P42/mnm symmetry consisting of thirty micelles was found only in and , when the temperature increased. The thermally induced transformation from the columnar to the micellar phase can be explained by increased chain entropy at higher temperatures. The complex micellar packing in the noncubic phase is attributed to the softness of the DLC micelles because the micellar corona consists of flexible alkyl chains. The discogen design concept in this study (i.e., the introduction of multibranched alkyl peripheries to the discotic mesogens via click chemistry) resulted in unconventional columnar-to-micellar transformation in conventional TP DLCs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call