Abstract

Flow in soft materials encompasses a wide range of viscous, plastic and elastic phenomena which provide challenges to modelling at the microscopic level. To create a controlled flow, we perform falling ball viscometry tests on packings of soft, frictionless hydrogel spheres. Systematic creep flow is found when a controlled driving stress is applied to a sinking sphere embedded in a packing. Here, we take the novel approach of applying an additional global confinement stress to the packing using an external load. This has enabled us to identify two distinct creep regimes. When confinement stress is small, the creep rate is independent of the load imposed. For larger confinement stresses, we find that the creep rate is set by the mechanical load acting on the packing. In the latter regime, the creep rate depends exponentially on the imposed stress. We can combine the two regimes via a rescaling onto a master curve, capturing the creep rate over five orders of magnitude. Our results indicate that bulk creep phenomena in these soft materials can be subtly controlled using an external mechanical force.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call