Abstract
We present novel microgels as a particle-based suspension array for direct and absolute microRNA (miRNA) detection. The microgels feature a flexible molecular architecture, antifouling properties, and enhanced sensitivity with a large dynamic range of detection. Specifically, they possess a core-shell molecular architecture with two different fluorescent dyes for multiplex spectral analyses and are endowed with a fluorescent probe for miRNA detection. Encoding and detection fluorescence signals are distinguishable by nonoverlapping emission spectra. Tunable fluorescence probe conjugation and emission confinement on single microgels allow for ultrasensitive miRNA detection. Indeed, the suspension array has high selectivity and sensitivity with absolute quantification, a detection limit of 10(-15) M, a dynamic range from 10(-9) to 10(-15) M, and higher accuracy than qRT-PCR. The antifouling properties of the microgels also permit the direct measurement of miRNAs in serum, without sample pretreatment or target amplification. A multiplexed assay has been tested for a set of miRNAs chosen as cancer biomarkers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.