Abstract

Metal coordination can significantly improve the macroscopic performance of many materials by enhancing their dynamic features. In this study, two supramolecular interactions, Fe3+ -carboxylic acid coordination, and structural water-induced hydrogen bonding, into an artificial polymerwereintroduced. Various attractive features, including flexibility and stretchability, are achieved because of the bulk state and dynamic hydrogen bonds of poly(thioctic acid-water) (poly[TA-H]). These unique features are considerably enhanced after the incorporation of Fe3+ cations into poly[TA-H] because metal coordination increased the mobility of the poly[TA-H] chains. Thus, the poly(thioctic acid-water-metal) (poly[TA-HM]) copolymer exhibited better flexibility and stretchability. Moreover, notable underwater/low-temperature self-healing capacity is obtained via the synergistic effect of the metal and hydrogen bonding. Most of the impact energy is quickly absorbed by poly[TA-H] or poly[TA-HM] and effectively and rapidly dissipated via reversible debonding/bonding via the interactions between the metal and hydrogen. Macroscopic plastic deformation or structural failure is not observed during high-speed (50-70ms-1 ) impact experiments or high-altitude (90m) falling tests. Furthermore, poly[TA-HM] displayed good thermal molding properties, which enabled its processing via 3D fused deposition modeling printing. Poly[TA-HM] also showed considerable effectiveness for monitoring complicated, dynamic, and irregular biological activities owing to its highly pressure-sensitive nature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.