Abstract

Block copolymers containing both hydrogen bonding and metal coordination sites have been synthesized by ring-opening metathesis polymerization and subsequently functionalized using noncovalent interactions. The resulting block copolymers can be viewed as “universal polymer backbones”, as a wide variety of polymers with varying functionalities can be prepared by altering the noncovalent functionalization strategy of the same polymer backbone. The effect of degree of polymerization, block copolymerization, block copolymer composition, and metal coordination on the hydrogen bonding interaction has been investigated. In general, none of these variables have a profound effect on the strength of the hydrogen bonding interactions along the polymer backbones, suggesting that the metal coordination and hydrogen bonding are orthogonal to each other in block copolymers. Finally, the effect of the noncovalent functionalization on the thermal properties of the polymers was investigated. We found that the noncovalent functionalization of all copolymers via hydrogen bonding and/or metal coordination reduced the glass-transition temperature and the thermal stability of all copolymers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call