Abstract

The electro-Fenton (EF) process is regarded as an efficient and promising sewage disposal technique for sustainable water environment protection. However, current developments in EF are largely restricted by cathode electrocatalysts. Herein, a supramolecular self-assembly strategy is adopted for synthetization, based on melamine–cyanuric acid (MCA) supramolecular aggregates integrated with carbon fixation using 5-aminosalicylic acid and zinc acetylacetonate hydrate. The prepared carbon materials characterize an ordered lamellar microstructure, high specific surface area (595 m2 g−1), broad mesoporous distribution (4~33 nm) and high N doping (19.62%). Such features result from the intrinsic superiority of hydrogen-bonded MCA supramolecular aggregates via the specific molecular assembly process. Accordingly, noteworthy activity and selectivity of H2O2 production (~190.0 mg L−1 with 2 h) are achieved. Excellent mineralization is declared for optimized carbon material in several organic pollutants, namely, basic fuchsin, chloramphenicol, phenol and several mixed triphenylmethane-type dyestuffs, with total organic carbon removal of 87.5%, 74.8%, 55.7% and 54.2% within 8 h, respectively. This work offers a valuable insight into facilitating the application of supramolecular-derived carbon materials for extensive EF degradation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.