Abstract

A red-blood-cell-like nitrogen-doped porous carbon catalyst with a high nitrogen content (9.81%) and specific surface area (631.46 m2/g) was prepared by using melamine cyanuric acid and glucose as sacrificial template and carbon source, respectively. This catalyst has a comparable onset potential and a higher diffusion-limiting current density than the commercial 20 wt% Pt/C catalyst in alkaline electrolyte. The oxygen reduction reaction mechanism catalyzed by this catalyst is mainly through a 4e pathway process. The excellent catalytic activity could origin from the synergistic effect of the in-situ doped nitrogen (up to 9.81%) and three-dimensional (3D) porous network structure with high specific surface area, which is conducive to the exposure of more active sites. It is interesting to note that the catalytic activity of oxygen reduction strongly depends on the proportion of graphic N rather than the total N content.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.