Abstract

Hazardous volatile organic compounds (VOCs) can significantly impact human health and the environment. Hence, the detection of VOCs is of foremost importance. A quinoxaline-based fluorimetric probe (1) unveils a notable "turn-on" fluorescence response towards mesitylene in the presence of other VOCs and common interfering ions in aqueous media. The sensing phenomenon involves specific 1 : 1 stoichiometric binding of the probe with mesitylene with a ∼2.66 ppm detection limit. Furthermore, the probe experiences morphological transformations from a fibril-network to a stone-shaped hetero-structure upon treatment with mesitylene, indicating mesitylene induced self-assembly. The detection induced self-assembly of the probe was further corroborated by dynamic-light-scattering (DLS) and fluorescence microscopy study. Importantly, this proposed approach is applicable to detect mesitylene in natural water sources and in the vapor phase using portable, low-cost filter paper strips.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.