Abstract

Nature employs supramolecular self-assembly to organize many molecularly complex structures. Based on this, we now report for the first time the supramolecular self-assembly of 3D lightweight nanocellulose aerogels using carboxylated ginger cellulose nanofibers and polyaniline (PANI) in a green aqueous medium. A possible supramolecular self-assembly of the 3D conductive supramolecular aerogel (SA) was provided, which also possessed mechanical flexibility, shape recovery capabilities, and a porous networked microstructure to support the conductive PANI chains. The lightweight conductive SA with hierarchically porous 3D structures (porosity of 96.90%) exhibited a high conductivity of 0.372 mS/cm and a larger area-normalized capacitance (Cs) of 59.26 mF/cm2, which is 20 times higher than other 3D chemically cross-linked nanocellulose aerogels, fast charge-discharge performance, and excellent capacitance retention. Combining the flexible SA solid electrolyte with low-cost nonwoven polypropylene and PVA/H2SO4 yielded a high normalized capacitance (Cm) of 291.01 F/g without the use of adhesive that was typically required for flexible energy storage devices. Furthermore, the supramolecular conductive aerogel could be used as a universal sensitive sensor for toxic gas, field sobriety tests, and health monitoring devices by utilizing the electrode material in lightweight supercapacitor and wearable flexible devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.