Abstract

Lithium (Li) metal batteries have the advantage of high energy density, but the Li dendrites risk piercing the separator and causing a short circuit in the battery. Replacing the liquid electrolytes with gel electrolytes is considered an effective strategy to solve the issues. Herein, a poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP)-based gel electrolyte, improved with multifunctional supramolecular polymer (MSP), was prepared to enhance the cycling stability and energy density of quasi-solid-state Li metal batteries. The MSP addictive constructs a cross-linked network structure with PVDF-HFP matrix and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) through hydrogen bonding, improving the mechanical strength of the composite gel electrolyte (PH-10%MSP-GE) to against the growth of Li dendrites. Moreover, the pre-lithiated sulfonic acid groups, conductive polyether groups of MSP, and the attraction of TFSI– anions, promote the Li-ion transportation of the composite gel electrolyte. Finally, the Li||Li symmetric cell cycle stably for over 450 h. The Li||LiFePO4 full cell demonstrates a high energy density and excellent cycling stability for over 600 cycles, with a capacity retention rate of up to 98.7%. This work provides valuable insights into the preparation of multifunctional composite gel polymer electrolytes and competitive quasi-solid-state Li metal batteries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.