Abstract

Recording neural activity from the living brain is of great interest in neuroscience for interpreting cognitive processing or neurological disorders. Despite recent advances in neural technologies, development of a soft neural interface that integrates with neural tissues, increases recording sensitivity, and prevents signal dissipation still remains a major challenge. Here, we introduce a biocompatible, conductive, and biostable neural interface, a supramolecular β-peptide-based hydrogel that allows signal amplification via tight neural/hydrogel contact without neuroinflammation. The non-biodegradable β-peptide forms a multihierarchical structure with conductive nanomaterial, creating a three-dimensional electrical network, which can augment brain signal efficiently. By achieving seamless integration in brain tissue with increased contact area and tight neural tissue coupling, the epidural and intracortical neural signals recorded with the hydrogel were augmented, especially in the high frequency range. Overall, our tissuelike chronic neural interface will facilitate a deeper understanding of brain oscillation in broad brain states and further lead to more efficient brain-computer interfaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.