Abstract
AbstractAmyloid fibrils are insoluble protein aggregates comprised of highly ordered β‐sheet structures and they are involved in the pathology of amyloidoses, such as Alzheimer’s disease. A supramolecular strategy is presented for inhibiting amyloid fibrillation by using cucurbit[7]uril (CB[7]). CB[7] prevents the fibrillation of insulin and β‐amyloid by capturing phenylalanine (Phe) residues, which are crucial to the hydrophobic interactions formed during amyloid fibrillation. These results suggest that the Phe‐specific binding of CB[7] can modulate the intermolecular interaction of amyloid proteins and prevent the transition from monomeric to multimeric states. CB[7] thus has potential for the development of a therapeutic strategy for amyloidosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.