Abstract

In this work, PEO-α-CD pseudorotaxane hydrogels were prepared. The gels were loaded with proteins, BSA and lysozyme, representing proteins with different molecular weights. The kinetics of protein release was studied. Factors such as PEO concentration, protein concentration and exposed surface area of the gels were investigated to understand their effects on the release of the encapsulated cargo. Erosion of the gel surface appeared to be the dominant factor for release of the proteins. Fitting the data to various models supported our hypothesis that the mechanism of release was primarily erosion-driven as the data was best described by zero order, power law and Hopfenberg model. The linear relationship between the amount of mass loss and time establishes the erosion of the polymer gel matrix to be the key factor for drug release.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.