Abstract

The evolution of massive stars is investigated in the phases of hydrogen and helium burning, taking into account the mass-loss due to light pressure in optically thick media. The evolution in the stage of hydrogen burning near the Main Sequence occurs without mass loss. The large inverse density gradient appears in the outer layers of a 30 M⊙ star after it goes into the domain of red super-giants in the helium-burning stage. This effect appears as a consequence of an excess of luminosity of the star the ciritical one in sufficiently extensive outer layer, where convection is not so effective. In this way, the conditions for outflow of matter are formed. The sequence of selfconsistent models is constructed, with the core in hydrostatic equilibrium and hydrodynamically outflowing envelope. The amount of mass loss is not a given parameter, but it is found during the calculations as a characteristic number of the problem. The amount of mass loss is very high, of the order of ≈0.5M⊙ yr, the velocity of the flow is ≈20 km s−1. The star loses about 7.2M⊙ during 15 yr. The amount of mass loss must rapidly decrease or finish altogether when matter near the hydrogen-burning layer begins to flow out, and a transformation of stellar structure must occur.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.