Abstract

An enormous number and variety of discrete, isolable, supramolecular-coordination-chemistry-based assemblies featuring well-defined nanoscale cavities have been designed, synthesized, and characterized over the past decade. A small number of these have subsequently been used as building blocks for microporous materials and now comprise an important component of an emerging chemistry of microporous molecular materials. The extant materials typically have displayed large void volumes, high internal surface areas, and the ability to withstand the systematic removal of solvent. These and other properties (chemical tailorability, alignment of cavities to form extended channels, good processability, etc.) suggest a number of potentially very exciting applications involving selective molecular transport, sensing, or chemical transformationwith many of these now supported by proof-of-concept experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.