Abstract
We report a new supramolecular porous crystal assembled from fused macrocycle-cage molecules. The molecule comprises a prismatic cage with three macrocycles radially attached. The molecules form a nanoporous crystal with one-dimensional (1D) nanochannels. The supramolecular porous crystal can take up lithium-ion electrolytes and achieve an ionic conductivity of up to 8.3 × 10-4 S/cm. Structural analysis and density functional theory calculations reveal that efficient Li-ion electrolyte uptake, the presence of 1D nanochannels, and weak interactions between lithium ions and the crystal enable fast lithium-ion transport. Our findings demonstrate the potential of fused macrocycle-cage molecules as a new design motif for ion-conducting molecular crystals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.