Abstract

An understanding of the mechanisms that suppress the human anti-pig cellular response is key for xenotransplantation. We have compared the ability of human regulatory T cells (Tregs) to suppress xenogeneic and allogeneic responses in vitro. Human peripheral blood mononuclear cells (PBMC), CD4+ T cells, or CD4+ CD25- T cells were stimulated with irradiated human or wild type (WT) or alpha1,3-galactosyltransferase gene-knockout (GT-KO) pig PBMC in the presence or absence of human CD4+ CD25 high Tregs. In separate experiments, 5- (and 6)-carboxyfluorescein diacetate succinimidyl ester-labeled human CD4+ T cells were stimulated with human or pig PBMC. The expansion and precursor frequencies of allo- and xenoreactive Tregs were assessed by labeling with FoxP3 mAb and flow cytometric analysis. The responses of human PBMC, CD4+ T cells, and CD4+ CD25- T cells to pig PBMC were stronger than to human PBMC (P<0.05). Human anti-GT-KO responses were weaker than anti-WT responses (P<0.05). Human CD4+ CD25 high Tregs suppressed proliferation of CD4+ CD25- T cells to both human and pig PBMC stimulator cells with the same efficiency. Alloreactive CD4+ CD25+ FoxP3 high responder T cells proliferated more than their xenoreactive counterparts (P<0.05), although xenoreactive CD4+ CD25+ T cells proliferated more than alloreactive cells (P<0.05). There was no difference in precursor frequency between allo- and xeno-reactive CD4+ CD25+ FoxP3 high cells. Human T-cell responses to pig cells are stronger than to allogeneic cells. The human response to GT-KO PBMC is weaker than to WT PBMC. Although human Tregs can suppress both responses, expansion of CD4+ CD25+ FoxP3 high cells against pig PBMC is weaker than against human PBMC. More human Tregs may be required to suppress the stronger xenogeneic response.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call