Abstract

Pigs are being used as an alternative source of tissues for humans and we are interested in the xenotransplantation of fetal pig islet-like cell clusters (ICC) into type 1 diabetic patients. Interleukin-(IL) 10 is a Th2 cytokine with immunosuppressive properties that down-regulate the cell-mediated response. In this study, we evaluated the effects of recombinant human IL-10 on human anti-pig xenogeneic cellular response in mixed lymphocyte culture (MLC) and in mixed islet lymphocyte culture (MILC). Human peripheral blood mononuclear cells as responder cells were cultured in one-way MLC with pig and human peripheral blood mononuclear cells as stimulant cells in xeno and allo-MLC, respectively, and also with fetal pig ICCs in MILC. IL-10 was added at the time of culture. The addition of IL-10 significantly inhibited the xeno-MLC (human anti-pig) in a dose-dependent manner, the percentage inhibition being 36, 60, and 73% at 1, 10, and 50 ng/ml, respectively. Inhibition in xeno-MLC was significantly lower than that of the allo-MLC (human anti-human) at all concentrations used, the percentage inhibition of the latter being 58, 84, and 92% at 1, 10, and 50 ng/ml, respectively. Further, the addition of IL-10 also significantly inhibited the proliferation of human peripheral blood mononuclear cells when they were cocultured with fetal pig ICCs, the inhibition being 59, 72, and 80% at 1, 10, and 50 ng/ml, respectively. IL-10 was not toxic to ICCs as determined by 3H-thymidine incorporation over 5 days culture. Preincubation of IL-10 with the pig stimulant cells or the human responder cells did not confer additional benefit in the inhibition of xeno-MLC. IL-10 needs to be present at the start or at an early stage (within 4 hr) in the xeno-MLC because if the addition of IL-10 was delayed by 4 hr, the effect was lost. Next, the production of cytokines was examined in MLC and MILC. In xeno-MLC, levels (pg/ml) of tumor necrosis factor-alpha (TNF-alpha) (163+/-17), interferon-gamma (IFN-gamma) (278+/-60), IL-5 (24+/-10), IL-6 (2959+/-923), and IL-10 (17+/-2) were produced in greater amounts than autologous controls (P<0.05). The levels of TNF-alpha, IFN-gamma, IL-6, and IL-10 but not IL-5 were significantly (P<0.05) lower in xeno-MLC than those produced in allo-MLC. All of these cytokines were also produced in MILC when human peripheral blood mononuclear cells (PBMC) were cocultured with ICCs, levels (pg/ml) being TNF-alpha (308+/-47), IFN-gamma (93+/-17), IL-5 (6.2+/-3), IL-6 (5649+/-421), and IL-10 (122+/-18). No detectable levels of IL-2 and IL-4 were produced in the MLC and in MILC. Addition of IL-10 significantly inhibited the production of TNF-alpha, IFN-gamma, IL-5, and IL-6 by 76, 96, 100, and 93%, respectively, in xeno-MLC. Addition of IL-10 also significantly (P<0.05) inhibited the production of TNF-alpha, IFN-gamma, IL-5, and IL-6 by 88, 91, 100, and 96%, respectively, in MILC. Exogenous addition of IL-2 was partially able to reverse the effect of IL-10 although addition of TNF-alpha had no effect on xeno and allo-MLC. Synergism was seen between IL-10 and cyclosporine in the inhibition of xeno and allo-MLC. Taken together, the results demonstrated that IL-10 has an immunomodulatory role to play in the inhibition of cellular immune responses associated with the xenotransplantation of fetal pig ICCs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call