Abstract

This letter shows that a moderate degree of edge disorder can explain the fact that the experimentally measured bandgaps of graphene nanoribbons (GNRs) do not depend on orientation. We argue that GNRs actually behave similarly to Anderson insulators and the measured bandgaps should thus be interpreted as quasi-mobility edges. Calculations in the tight binding approach reveal that in the presence of edge disorder, quasi-mobility edge and electronic structures become independent of orientation and that quasi-mobility edge follows a quasi-universal law similar to experimental data, although with different parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.