Abstract

Bio-heavy oil (BHO) is a renewable fuel, but its efficient use is problematic because its combustion may emit hazardous air pollutants (e.g., polycyclic aromatic hydrocarbon (PAH) compounds, NOx, and SOx). Herein, catalytic fast pyrolysis over HZSM-5 zeolite was applied to upgrading BHO to drop-in fuel-range hydrocarbons with reduced contents of hazardous species such as PAH compounds and N- and S-containing species (NOx and SOx precursors). The effects of HZSM-5 desilication and linear low-density polyethylene (LLDPE) addition to the feedstock on hydrocarbon production were explored. The apparent activation energy for the thermal decomposition of BHO was up to 37.5% lowered by desilicated HZSM-5 (DeHZSM-5) compared with HZSM-5. Co-pyrolyzing LLDPE with BHO increased the content of drop-in fuel-range hydrocarbons and decreased the content of PAH compounds. The DeHZSM-5 was effective in producing drop-in fuel-range hydrocarbons from a mixture of BHO and LLDPE and suppressing the formation of N- and S-containing species and PAH compounds. The DeHZSM-5 enhanced the hydrocarbon production by up to 58.5% because of its enhanced porosity and high acid site density compared to its parent HZSM-5. This study experimentally validated that BHO can be upgraded to less hazardous fuel via catalytic fast co-pyrolysis with LLDPE over DeHZSM-5.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.