Abstract

We study the superconducting instability mediated by spin fluctuations in the Eliashberg theory for a minimal two-band model of iron-based superconductors. While antiferromagnetic spin fluctuations can drive superconductivity (SC) as is well established, we find that spin fluctuations necessarily contain a contribution to suppress SC even though SC can eventually occur at lower temperatures. This self-restraint effect stems from a general feature of the spin-fluctuation mechanism, namely, the repulsive pairing interaction, which leads to phase frustration of the pairing gap and consequently the suppression of SC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.