Abstract

As a postprograming resistance shift, the relaxation effect could be a major issue for resistive random access memory (RRAM) applications. To understand the physical mechanisms of the relaxation effect, temperature-related ion and charge movements are analyzed using the incremental-step-pulse program (ISPP) and repeat-cycle program (RCP). Pre-electron detrapping (PED) operation is found to minimize the amount of interfacial trapped charges and thus to greatly reduce the resistance relaxation effect. Our experimental results demonstrate the improved data retention and tight distribution of RRAM arrays as a result of the above optimized program operations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.