Abstract

Plasma-induced damage (PID) during plasma-etching processes was suppressed by the application of Cl2 plasma etching at an optimal temperature of 400 °C, based on results of evaluations of photoluminescence (PL), stoichiometric composition, and surface roughness. The effects of ions, photons, and radicals on damage formation were separated from the effects of plasma using the pallet for plasma evaluation (PAPE) method. The PID was induced primarily by energetic ion bombardments at temperatures lower than 400 °C and decreased with increasing temperature. Irradiations by photons and radicals were enhanced to form the PID and to develop surface roughness at temperatures higher than 400 °C. Consequently, Cl2 plasma etching at 400 °C resulted optimally in low damage and a stoichiometric and smooth GaN surface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.