Abstract

Npr1 gene (coding for NPR-A) and Npr2 gene (coding for NPR-B) are identified as intrinsic anti-hypertrophic genes that opposes abnormal cardiac remodeling. However, the functional role of Npr1 and Npr2 genes during cardiac hypertrophic growth is not well understood. Hence, the present investigation was aimed to study the effect of Npr1 and Npr2 gene silencing, respectively on β-AR activation induced cardiac hypertrophic growth in H9c2 cells in vitro. The control, Npr1, and Npr2 gene suppressed H9c2 cells, respectively were treated with ISO (10−5 M) for 48 h. The mRNA and protein expression profile of NPR-A, NPR-B, PKG-I and cGMP were analyzed by qPCR, Western blotting, ELISA, and immunofluorescence methods, respectively. A marked increase in cell size (30.10 ± 0.51 μm vs 61.83 ± 0.43 μm, 2-fold) accompanied by elevated hypertrophic marker genes (α-sk and β-MHC 3-fold, respectively) expression was observed in Npr1 gene suppressed H9c2 cells as compared with control cells. In contrast, the Npr2 gene suppression in H9c2 cells neither altered the cell size nor the level of hypertrophic marker genes expression. Upon exposure to Isoproterenol, the Npr1 suppressed H9c2 cells exhibited further increase in cell size (1.5 fold), whereas, no significant increase in cell size or marker genes expression was noticed in Npr2 suppressed cells. Moreover, the intracellular cGMP level was down-regulated by 2-fold in Npr1 suppressed cells, while, no significant change was observed in Npr2 suppressed cells. Together, these results suggest that Npr1, not Npr2 gene function is positively associated with the initiation of cardiac fetal gene program and development of cardiac hypertrophic growth.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call