Abstract

Cancer-associated fibroblasts (CAFs) in the tumor microenvironment have been associated with formation of a dynamic and optimized niche for tumor cells to grow and evade cell death induced by therapeutic agents. We recently reported that ablation of β-catenin expression in stromal fibroblasts and CAFs disrupted their biological activities in in vitro studies and in an in vivo B16F10 mouse melanoma model. Here, we show that the development of a BRAF-activated PTEN-deficient mouse melanoma was significantly suppressed in vivo after blocking β-catenin signaling in CAFs. Further analysis revealed that expression of phospho-Erk1/2 and phospho-Akt was greatly reduced, effectively abrogating the activating effects and abnormal cell cycle progression induced by Braf and Pten mutations. In addition, the epithelial-mesenchymal transition (EMT)-like process was also suppressed in melanoma cells. Taken together, our data highlight an important crosstalk between CAFs and the RAF-MEK-ERK signaling cascade in BRAF-activated melanoma and may offer a new approach to abrogate host-dependent drug resistance in targeted therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.