Abstract

We examined the effect of bisphenol A (BPA) on microsomal cytochrome P450 (P450) enzymes in rats. Rats were treated intraperitoneally with BPA daily for 4 days, at doses of 10, 20, and 40 mg/kg. Among the P450-dependent monooxygenase activities, testosterone 2alpha-hydroxylase (T2AH) and testosterone 6beta-hydroxylase (T6BH) activities, which are associated with CYP2C11 and CYP3A2 respectively, were remarkably decreased by 40 mg/kg BPA. The levels of the control activities were 13 and 50%, respectively. Furthermore, immunoblotting showed that BPA (20 or 40 mg/kg) significantly reduced CYP2C 11/6 and CYP3A2/1 protein levels in rat liver microsomes. In addition, estradiol 2-hydroxylase (ED2H) and benzphetamine N-demethylase (BZND) activities were significantly decreased by BPA at 20 and 40 mg/kg (by 19-73%). The Km values for T2AH and T6BH in 20 and 40 mg/kg BPA-treated rats were significantly high compared with that in control rats. The Vmax for T2AH was dose-dependently decreased by BPA treatment, whereas that of T6BH was only decreased by BPA at 40 mg/kg. On the other hand, lauric acid omega-hydroxylase (LAOH) activity was significantly increased by BPA at 20 and 40 mg/kg (1.5- and 1.7-fold, respectively). Immunoblot analysis showed that 20 and 40 mg/kg BPA induced CYP4A1/2 protein expression. However, the activities 7-ethoxyresorufin O-deethylase (EROD), 7-methoxyresorufin O-demethylase (MROD), 7-ethoxycoumarin O-deethylase (ECOD), 7-benzyloxyresorufin O-debenzylase (BROD), aminopyrine N-demethylase (APND), chlorzoxazone 6-hydroxylase (CZ6H), erythromycin N-demethylase (EMND), and testosterone 7alpha-hydroxylase (T7AH) were not affected by BPA at any dose. These results suggest that BPA affects male-specific P450 isoforms in rat liver, and that these changes closely relate to the toxicity of BPA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call