Abstract

We examined the effect of 1,1-dichloroethylene (1,1-DCE) on microsomal cytochrome P450 (P450) enzymes in rat liver and kidney. Rats were treated intraperitoneally with 1,1-DCE daily for 4 days, at doses of 200, 400, and 800 mg/kg. Among the P450-dependent monooxygenase activities in liver microsomes, testosterone 2alpha-hydroxylase (T2AH), which is associated with CYP2C11 activity, was remarkably decreased by 800 mg/kg 1,1-DCE. The level relative to control activity was < 10%. Furthermore, immunoblotting showed that 1,1-DCE (> or = 400 mg/kg) significantly decreased CYP2C11/6 protein levels in liver microsomes. In addition, 7-methoxyresorufin O-demethylase (MROD), 7-ethoxycoumarin O-deethylase (ECOD), benzphetamine N-demethylase (BZND), chlorzoxazone 6-hydroxylase (CZ6H), and testosterone 6beta-hydroxylase (T6BH) activities were significantly decreased by the highest dose of 1,1-DCE (by 40-70%). However, the activities of other P450-dependent monooxygenases, namely 7-ethoxyresorufin O-deethylase (EROD), 7-benzyloxyresorufin O-debenzylase (BROD), aminopyrine N-demethylase (APND), erythromycin N-demethylase (EMND), lauric acid omega-hydroxylase (LAOH), and testosterone 7alpha-hydroxylase (T7AH) were not affected by 1,1-DCE at any dose. Immunoblotting showed CYP1A1/2, CYP2B1/2, CYP2E1, and CYP3A2/1 protein levels were significantly decreased by 60-66% by 1,1-DCE (800 mg/kg), whereas that of CYP4A1/2 was not affected by any dose of 1,1-DCE. By contrast, among the P450-dependent monooxygenase activities in kidney microsomes, only CZ6H activity was increased by 1,1-DCE (1.6-fold at 800 mg/kg). Also, it was observed that 1,1-DCE (800 mg/kg) significantly increased CYP2E1 protein levels by immunoblotting (approximately 1.5-fold). These results suggest that 1,1-DCE changes the constitutive P450 isoforms in the rat liver and kidney, and that these changes closely relate to the toxicity of 1,1-DCE.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.