Abstract

Optimization procedures to install a viscoelastic dynamic damper into a single degree of freedom primary system is briefly reviewed. Excitation methods are shown to identify elastic modulus and loss factor of a viscoelastic material at given prestrain, which are needed in the optimum design of the damper. An optimum-designed damper is attached on the toolpost of a lathe and its excellent chatter-suppressing effects are observed under six cutting conditions in terms of integrated power of the accelerations around the chatter frequency. Because one of the resonance frequencies responsible for the chatter varies depending upon the location of the carriage on the sliding surface, the prestrain of the viscoelastic element, which is initially optimum-tuned and damped at a location of the carriage, is readjusted for optimum tuning at the other locations. The effects of the readjustment are discussed in terms of the reduction of structural compliances and magnitudes of chatter vibrations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.