Abstract

This paper describes the application of active, open loop, control in effective damping of severe combustion instabilities in a high pressure (i.e., around 520 psi) gas turbine combustor simulator. Active control was applied by harmonic modulation of the fuel injection rate into the combustor. The open-loop active control system consisted of a pressure sensor and a fast response actuating valve. To determine the dependence of the performance of the active control system upon the frequency, the fuel injection modulation frequency was varied between 300 and 420 Hz while the frequency of instability was around 375 Hz. These tests showed that the amplitude of the combustor pressure oscillations strongly depended upon the frequency of the open loop control. In fact, the amplitude of the combustor pressure oscillations varied ten fold over the range of investigated frequencies, indicating that applying the investigated open loop control approach at the appropriate frequency could effectively damp detrimental combustion instabilities. This was confirmed in subsequent tests in which initiation of open loop modulation of the fuel injection rate at a non resonant frequency of 300Hz during unstable operation with peak to peak instability amplitude of 114 psi and a frequency of 375Hz suppressed the instability to a level of 12 psi within approximately 0.2 sec (i.e., 75 periods). Analysis of the time dependence of the spectra of the pressure oscillations during suppression of the instability strongly suggested that the open loop fuel injection rate modulation effectively damped the instability by “breaking up” (or preventing the establishment of) the feedback loop between the reaction rate and combustor oscillations that drove the instability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call