Abstract

Robotic arms have been shown to be able to perform cyclic tasks with an open-loop stable controller. However, model errors make it hard to predict in simulation what cycle the real arm will perform. This makes it difficult to accurately perform pick and place tasks using an open-loop stable controller. This paper presents an approach to make open-loop controllers follow the desired cycles more accurately. First, we check if the desired cycle is robustly open-loop stable, meaning that it is stable even when the model is not accurate. A novel robustness test using linear matrix inequalities is introduced for this purpose. Second, using repetitive control we learn the open loop controller that tracks the desired cycle. Hardware experiments show that using this method, the accuracy of the task execution is improved to a precision of 2.5 cm, which suffices for many pick and place tasks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.