Abstract

The electric activities of neurons serve as a foundation for normal brain functions. Electromagnetic radiation has a significant impact on neuronal activity in the brain, especially when cell phone is used extensively. To understand this mechanism, we developed a mathematical model aiming at describing the effect of electromagnetic radiation on neuronal firing activity by introducing an additional membrane current into the Hodgkin–Huxley neuron model. The results show that the neuronal firing activity of a single neuron can be suppressed by electromagnetic radiation. Besides, the spatiotemporal patterns of neuronal network are also suppressed from the stable propagating wave state to a homogeneous resting state. Our studies suggest that the electromagnetic radiation has a suppressive effect on neuronal firing activities, especially on the collective electric activities of neuronal network that is related to information processing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call