Abstract

The mechanisms of epileptiform neuronal activity develop- ment under blood-brain barrier (BBB) dysfunction remains relevant in modern psychoneurology. In the present work we mimic some effects of BBB disruption in the culture of hip- pocampal neurons to examined the effect of serum-adapted ionic environment on the impulse activity of hippocampal neurons and the role of serum protein thrombin in induction of epileptiform neuronal activity. Using the whole-cell patch- clamp method under current-clamp mode we analyzed the spontaneous action potentials (AP) in the single hippocampal neurons. The changing of ionic extracellular neuronal environ- ment to such serum-adapted contributed to the development of epileptiform tonic activity of cultured hippocampal neurons and led to increase the average APs frequency by 65.1 ± 17.9% (n = 5) in neurons with spontaneous firing activity (FA) and to occurrence of tonic electrical activity (1.65 ± 0.4 s-1) in neurons without firing activity. Glutamate NMDA receptors significantly contribute to epileptiform tonic activity formation in neurons with FA, while their role in tonic activity providing in neurons without FA was insignificant. Thrombin (5 U/ml) in the serum-adapted ionic solution significantly enhanced of epileptiform activity in neurons with and without spontaneous FA: APs frequency increased in these neuronal groups by 117.3 ± 25.6% (n = 3) and by 61.8 ± 11.5% (n = 3), respective- ly, compared with that in the serum-adapted ionic solution only. Blockade of thrombin protease activated receptor 1 (PAR-1) by application of SCH 79797 (10 μm) canceled the thrombin’s effect in neurons without spontaneous FA, and significantly reduced such in neurons with FA. Therefore, the change of ionic extracellular neuronal environment to serum-adapted stimulates the occurrence of epileptiform activity in hippo- campal neurons, that is apparently associated with NMDA- receptors activation in neurons with FA. The proepileptiform action of thrombin was mostly mediated by PAR-1 activation. Thrombin-dependent regulation of the hippocampal single neurons firing activity involves the mechanisms different from the modulation of glutamate NMDA receptors in these cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call