Abstract
To produce highly ionized plasmas at low operating pressure in a plasma neutralizer of negative ion based neutral beam (N-NB) systems, it is a critical issue to suppress leakage of fast electrons through large openings as the beam entrance/exit. The authors propose to form weak transverse magnetic fields without a significant beam deflection, called the shield field, across the large openings of the neutralizer. A numerical study showed that the shield field of only few tens of Gauss is sufficient to suppress the fast electron leakage from the openings. By measuring of an electron energy distribution function (EEDF), it was confirmed that such a weak magnetic field is enough to repel the fast electrons back into the neutralizer plasma. As the result, the plasma density increased with the shield field strength and saturated at 30 G. The plasma density reached 50% higher value than that without the shield field. Thus it was found that reflected fast electrons by the shield field of only 30 G work effectively for the plasma generation. It was also estimated that such a weak magnetic field sufficiently suppresses the deflection of a 1 MeV beam. This weak magnetic field would be applicable to the plasma neutralizer for the fusion demonstration (DEMO) plant.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have