Abstract
ObjectivesPregsal is a novel salicylaldehyde derivative of pregabalin, a structural analogue of gamma-aminobutyric acid approved for treating epilepsy, neuropathic pain and diabetic peripheral neuropathy but not trialled to date for airway inflammatory diseases. The current study evaluated a preclinical model of airway inflammation and lung remodelling induced by ovalbumin (OVA) for the potential benefits of pregsal. MethodsWistar rats (N = 10 per group) were divided into four groups sensitized intraperitoneally (i.p.) and then challenged intranasally with OVA, with or without i.p. pregsal (100 mg/kg) or methylprednisolone (MP) (15 mg/kg). Airway inflammation was assessed through inflammatory cell infiltration in the lungs, delayed-type hypersensitivity (DTH), and nitric oxide (NO) level using bronchoalveolar lavage fluid (BALF) and lung tissues. The mRNA expression levels of a panel of inflammatory mediators (cytokines, chemokine and growth factors) in the lungs were measured by the reverse transcription-polymerase chain reaction (RT-PCR). Systemic inflammation was assessed using splenocyte proliferation and total and differential leucocyte count in blood and BALF. Lung remodelling was assessed by wet/dry lung weight ratio, epithelial thickness and goblet cell hyperplasia, hydroxyproline and osteopontin (OPN) levels, arginase activity in lungs, and ornithine decarboxylase (ODC) activity in lung mitochondria. ResultsPregsal significantly alleviated the total and differential leucocyte count in blood and BALF, NO production in BALF and recruitment of inflammatory cells in the lungs. It suppressed the T-cell response and attenuated the OVA-induced lung epithelial thickness, goblet cell hyperplasia, wet/dry lung weight ratio, hydroxyproline and OPN levels, arginase and ODC activity. Levels of inflammatory mediators were also downregulated in the lungs by pregsal. ConclusionsThe key findings of this study indicate that pregsal significantly reduces the development of airway inflammation and lung remodelling by suppression of cytokine storm and associated inflammatory mediators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.