Abstract

IntroductionRetention of 2-deoxy-2-[18F]fluoro-D-glucose 18F-FDG in the bladder causes more problems in small animal research than in human research owing to the smaller size of the subject. Catheterization has been proposed to reduce bladder spillover both in human studies and in small animal research. Noninvasive alternatives such as hydration plus furosemide also seem to be a promising pre-imaging strategy for decreasing bladder spillover. Our main goal was to measure the effects of the combination of furosemide and hydration for reducing bladder signal directly on mouse bowel 18F-FDG-PET images.MethodsNine mice were divided into two groups: the control group (C, n = 4) and the treatment group (n = 5). The clearance protocol combines hyperhydration and a single furosemide dose during the 18F-FDG uptake period. Two images were acquired on different days in treated mice to evaluate two different furosemide doses (low dose, LD, 3.5 mg/kg; and high dose, HD, 7 mg/kg). A region of interest was drawn on each computed tomography image (bladder, kidneys, liver, muscle, and bone marrow). To quantify bladder spillover, two different areas of the colon were selected.ResultsA remarkable reduction in bladder spillover was achieved on 18F-FDG -PET in both groups. Our imaging findings were quantified, and both furosemide doses induced a decrease in mean standard uptake values (SUVmean) compared with the controls (LD 1.46 ± 0.54 and HD 1.05 ± 0.29; controls: 8.90 ± 3.4 [p-value < 0.05]).ConclusionWe validated a non-invasive, easy, and harmless pre-imaging alternative for decreasing 18F-FDG bladder spillover. Our study shows the effect of furosemide on bladder spillover directly on 18F-FDG-PET images by measuring SUVmean in the bladder, colon, liver, muscle, and bone marrow.

Highlights

  • Retention of 2-deoxy-2-[18F]fluoro-D-glucose 18F-FDG in the bladder causes more problems in small animal research than in human research owing to the smaller size of the subject

  • Our main goal was to measure the effects of the combination of furosemide and hydration for reducing bladder signal directly on mouse bowel 18F-FDG-positron emission tomography (PET) images

  • A remarkable reduction in bladder spillover was achieved on 18F-FDG -PET in both groups

Read more

Summary

Introduction

Retention of 2-deoxy-2-[18F]fluoro-D-glucose 18F-FDG in the bladder causes more problems in small animal research than in human research owing to the smaller size of the subject. Catheterization has been proposed to reduce bladder spillover both in human studies and in small animal research. Noninvasive alternatives such as hydration plus furosemide seem to be a promising pre-imaging strategy for decreasing bladder spillover. Our main goal was to measure the effects of the combination of furosemide and hydration for reducing bladder signal directly on mouse bowel 18F-FDG-PET images

Methods
Results
Conclusion
Materials and methods
Discussion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.