Abstract

Traditional semiconductors are known to exhibit excellent electrical properties but oversized lattice thermal conductivities, thus limiting their thermoelectric performance. Herein, we have discovered a low-energy allotrope of those traditional semiconductors. Compared with the wurtzite structure, the lattice thermal conductivity is reduced by more than five times in the haeckelite structure. This is attributed to the softening of acoustic phonon modes and concurrently enhanced anharmonicity in the haeckelite structure. Benefiting from the suppressed lattice thermal conductivity while retaining the excellent electrical properties of wurtzite structure, haeckelite compounds have been proven to be a novel category of high-performance thermoelectric materials. As an excellent representative, haeckelite CdTe exhibits a peak figure of merit approaching 1.3 at n-type doping and high temperature, which experiences a 3-fold improvement compared with its wurtzite counterpart. This work provides an alternative pathway of engineering the lattice thermal conductivities of traditional semiconductors toward superior thermoelectric properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.