Abstract

We explore how students developed an integrated understanding of scientific ideas and how they applied their understandings in new situations. We examine the incremental development of 7th grade students’ scientific ideas across four iterations of a scientific explanation related to a freshwater system. We demonstrate that knowing how to make use of scientific ideas to explain phenomena needs to be learned just as developing integrated understanding of scientific ideas needs to be learned. Students participated in an open-ended, long-term project-based learning unit, constructing one explanation over time to address, “How healthy is our stream for freshwater organisms and how do our actions on land potentially impact the water quality of the stream?” The explanation developed over several weeks as new data were collected and analyzed. Students discussed evidence by revisiting scientific ideas and including new scientific ideas. This research investigates two questions: (1) As students engage in writing a scientific explanation over time, to what extent do they develop integrated understanding of appropriate scientific ideas? and (2) When writing about new evidence, do these earlier experiences of writing explanations enable students to make use of new scientific ideas in more sophisticated ways? In other words, do earlier experiences allow students to know how to make use of their ideas in these new situations? The results indicated statistically significant effects. Through various iterations of the explanation students included richer discussion using appropriate scientific ideas. Students were also able to make better use of new knowledge in new situations.

Highlights

  • As students explore a phenomenon, they need to gather evidence and use scientific ideas and reasoning to help them figure out and make sense of that phenomenon

  • We start with an illustrative example that examines the progression of scientific ideas related to pH through each of the four iterations made by one student, Paul, who is representative of many students whose work fell in the middle to upper-middle ranges relative to his peers

  • The research reported here examined the development of students’ scientific ideas across four iterations of an explanation that included four water quality measures explored in four separate episodes over a six-week period

Read more

Summary

Introduction

As students explore a phenomenon, they need to gather evidence and use scientific ideas and reasoning to help them figure out and make sense of that phenomenon. This research explored how students developed an integrated understanding of scientific ideas and used ideas to explain the health of a stream through constructing. For the first two water quality measures of pH and temperature, students were guided to both include scientific ideas and how to use those ideas to explain the water phenomenon. Building from these experiences, more ideas were expected from students as they made sense of third and fourth water quality measures, namely, conductivity and dissolved oxygen. Students were expected to develop more thorough explanations as they gained more knowledge and experience in writing scientific explanations

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call