Abstract

As near-infinite amount of data are becoming accessible on the Web, it is getting more and more important to support intelligent query mechanisms, to help each user to identify the ideal results of manageable size. As such mechanism, skyline queries have gained a lot of attention lately for its intuitive query formulation. This intuitiveness, however, has a side-effect of generating too many results, especially for high-dimensional data, to satisfy a wide range of user's needs. Our goal is to support personalized skyline queries as identifying truly interesting objects based on user-specific preference and retrieval size k. While this problem has been studied previously, the proposed solution identifies top-k results by navigating a skycube, which incurs exponential storage overhead to data dimensionality and excessive one-time computational overhead for skycube construction. In contrast, we develop novel techniques to significantly reduce both storage and computation overhead. Our extensive evaluation results validate this framework on both real-life and synthetic data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.