Abstract

As data of an unprecedented scale are becoming accessible, it becomes more and more important to help each user identify the ideal results of a manageable size. As such a mechanism, skyline queries have recently attracted a lot of attention for its intuitive query formulation. This intuitiveness, however, has a side effect of retrieving too many results, especially for high-dimensional data. This paper is to support personalized skyline queries as identifying “truly interesting” objects based on user-specific preference and retrieval size k. In particular, we abstract personalized skyline ranking as a dynamic search over skyline subspaces guided by user-specific preference. We then develop a novel algorithm navigating on a compressed structure itself, to reduce the storage overhead. Furthermore, we also develop novel techniques to interleave cube construction with navigation for some scenarios without a priori structure. Finally, we extend the proposed techniques for user-specific preferences including equivalence preference. Our extensive evaluation results validate the effectiveness and efficiency of the proposed algorithms on both real-life and synthetic data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.