Abstract
Nowadays, the development of hydrogen economy in the transportation sector is hindered by the principal barriers arising from the lack of adequate infrastructure and the small fleet of hydrogen-based road vehicles.This study investigates the potential of small-scale autonomous hydrogen refuelling stations with onsite production via an alkaline electrolysis apparatus powered by a small wind turbine. In this context, an urban area with promising wind resources has been selected. Based on the wind conditions and an indicative hydrogen demand for refuelling light-duty fuel cell electric vehicles such as bicycles, the sizing of the wind turbine and the electrolyser has been theoretically calculated. For supporting the daily hydrogen refuelling demand of the fuel cell electric bicycles, which is estimated at approximately 6 kg, it is calculated that a 50 kW wind turbine should be installed in order to power a 70 kW alkaline electrolyser for producing hydrogen. The capital cost of the hydrogen station is calculated at €248,130, while the retail price of the produced hydrogen is estimated to be more than 50.2 €/kgH2 in order to achieve a positive internal rate of return.Ultimately, the present paper aims at delivering a feasibility study of a small-scale H2 refuelling station for fuel cell bicycles in order to provide investors with initiatives to implement such schemes in urban environments where problems of low air quality and high traffic are intense.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have