Abstract
In this paper we propose Support Vector Random Fields (SVRFs), an extension of Support Vector Machines (SVMs) that explicitly models spatial correlations in multi-dimensional data. SVRFs are derived as Conditional Random Fields that take advantage of the generalization properties of SVMs. We also propose improvements to computing posterior probability distributions from SVMs, and present a local-consistency potential measure that encourages spatial continuity. SVRFs can be efficiently trained, converge quickly during inference, and can be trivially augmented with kernel functions. SVRFs are more robust to class imbalance than Discriminative Random Fields (DRFs), and are more accurate near edges. Our results on synthetic data and a real-world tumor detection task show the superiority of SVRFs over both SVMs and DRFs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.