Abstract

Markov Random Fields (MRFs) are a popular and well-motivated model for many medical image processing tasks such as segmentation. Discriminative Random Fields (DRFs), a discriminative alternative to the traditionally generative MRFs, allow tractable computation with less restrictive simplifying assumptions, and achieve better performance in many tasks. In this paper, we investigate the tumor segmentation performance of a recent variant of DRF models that takes advantage of the powerful Support Vector Machine (SVM) classification method. Combined with a powerful Magnetic Resonance (MR) preprocessing pipeline and a set of ‘alignment-based’ features, we evaluate the use of SVMs, MRFs, and two types of DRFs as classifiers for three segmentation tasks related to radiation therapy target planning for brain tumors, two of which do not rely on ‘contrast agent’ enhancement. Our results indicate that the SVM-based DRFs offer a significant advantage over the other approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.