Abstract
The Support Vector Machine (SVM) has recently been introduced as a new pattern classification technique. It learns the boundary regions between samples belonging to two classes by mapping the input samples into a high dimensional space, and seeking a separating hyperplane in this space. This paper describes an application of SVMs to two phoneme recognition problems: 5 Thai tones, and 12 Thai vowels spoken in isolation. The best results on tone recognition are 96.09% and 90.57% for the inside test and outside test, respectively, and on vowel recognition are 95.51% and 87.08% for the inside test and outside test, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.