Abstract
AbstractThe recognition of vowels in Chinese speech is very important for Chinese speech recognition and understanding. However, it is rather difficult and there has been no efficient method to solve it yet. In this paper, we propose a new approach to the recognition of Chinese vowels via the support vector machine (SVM) with the Mel-Frequency Cepstral Coefficients (MFCCs) as the vowel’s features. It is shown by the experiments that this method can reach a high recognition accuracy on the given vowels database and outperform the SVM with the Linear Prediction Coding Cepstral (LPCC) coefficients as the vowel’s features.KeywordsSupport Vector MachineRadial Basis FunctionSpeech SignalRecognition AccuracyLinear Support Vector MachineThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.