Abstract
In this paper, we provide a wildness criterion for any finite dimensional Hopf algebra with finitely generated cohomology. This generalizes a result of Farnsteiner to not necessarily cocommutative Hopf algebras over ground fields of arbitrary characteristic. Our proof uses the theory of support varieties for modules, one of the crucial ingredients being a tensor product property for some special modules. As an application, we prove a conjecture of Cibils stating that small quantum groups of rank at least two are wild.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.