Abstract

We studied the effect of support stability on postural responses to the vibration of Achilles tendons and of neck dorsal muscles in healthy humans. For this purpose we compared postural responses on a rigid floor and on 6 cm high rocking supports (see-saws) of different curvatures (different radii: 30, 60 and 120 cm). The subject stood with eyes closed, the centre of the feet coincided with the centre of the see-saw. We recorded platform tilt, horizontal displacements of the upper body, ankle joint angle and activity of ankle joint muscles. On the rocking platform subjects maintained balance in a sagittal direction by making see-saw rotations placing the support under the body's centre of gravity. Equilibrium maintenance requires that the torque in the ankle joint increases during forward body displacements, as on the rigid floor, and be accompanied by a plantar flexion (not by a dorsiflexion) in the ankle joint. The directional dependence of vibration-induced reactions on the see-saw was the same (relative to space) as on the rigid floor: backward body displacement during Achilles tendon vibration and forward body displacement during neck muscle vibration. A decrease of support stability (with a decrease of the radius from 120 to 30 cm) diminished significantly the effect of Achilles tendon vibration and to a lesser extent the effect of neck muscle vibration. In contrast, the increase of platform stability by hand contact with a stable external object gave rise to prominent body sway in response to Achilles tendon vibration. Neck muscle vibration on the movable support provoked a quick initial forward body sway. This initial quick response was absent during vibration of the Achilles tendons. We conclude that postural responses to muscle vibration reflect the participation of different muscles in posture control and depend on the support properties. Support instability changes the role of proprioceptive information and the state of the system of equilibrium maintenance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call