Abstract
Consider the problem of simultaneous estimation and support recovery of the coefficient vector in a linear data model with additive Gaussian noise. We study the problem of estimating the model coefficients based on a recently proposed non-convex regularizer, namely the stochastic gates (STG) (Yamada et al., 2020). We suggest a new projection-based algorithm for solving the STG regularized minimization problem, and prove convergence and support recovery guarantees of the STG-estimator for a range of random and non-random design matrix setups. Our new algorithm has been shown to outperform the existing STG algorithm and other classical estimators for support recovery in various real and synthetic data analyses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.